The generator matrix 1 0 0 0 1 1 1 X 0 1 1 X^2 1 X 1 1 1 X 1 1 0 1 1 X^2+X 1 1 X^2+X X^2+X 1 1 1 1 1 0 1 0 0 1 X^2 X+1 1 X 1 0 1 X+1 1 0 X^2+X+1 X^2 1 X^2+X X^2+1 1 1 X X X+1 X^2+X+1 1 1 1 X^2+X X^2 X^2 1 0 0 1 0 1 X^2+1 X^2 X^2+1 1 X+1 X^2+X+1 1 X X^2 X^2 1 X^2+X 1 X^2+1 X X 0 0 0 X^2+X+1 X^2+X+1 X^2+X 0 X X^2+X+1 1 X+1 X^2+1 0 0 0 1 X^2 1 X^2+1 X^2+X+1 X+1 1 X^2+X X^2+X X^2 1 X^2+X+1 X+1 X^2+X+1 X^2+1 X^2+1 X X+1 X^2+1 X^2+X 1 X+1 1 X^2+X+1 X^2 0 X^2+X+1 0 0 X^2+X+1 generates a code of length 33 over Z2[X]/(X^3) who´s minimum homogenous weight is 28. Homogenous weight enumerator: w(x)=1x^0+117x^28+348x^29+477x^30+456x^31+442x^32+508x^33+473x^34+410x^35+363x^36+254x^37+151x^38+60x^39+21x^40+8x^41+3x^42+2x^43+2x^45 The gray image is a linear code over GF(2) with n=132, k=12 and d=56. This code was found by Heurico 1.11 in 0.109 seconds.